
Work Order No. 582-15-52944-05

Contract # 582-15-50417
Project #FY15-35

Final Report

CAMx Speed Improvements

PREPARED UNDER A CONTRACT FROM THE
TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

The preparation of this report was financed through a contract from the
State of Texas through the Texas Commission on Environmental Quality.

The content, findings, opinions and conclusions are the work of the author(s) and
do not necessarily represent findings, opinions or conclusions of the TCEQ.

Prepared for:
Jim MacKay

Texas Commission on Environmental Quality
121 Park 35 Circle MC 164

Austin, TX 78753

Prepared by:
Christopher Emery, Gary Wilson,

DJ Rasmussen, Greg Yarwood
Ramboll Environ

773 San Marin Drive, Suite 2115
Novato, California, 94998

July 2015

06-35854E

July 2015

i

CONTENTS

EXECUTIVE SUMMARY... 1

1.0 INTRODUCTION ... 3

1.1 Objectives ... 3

1.2 Report Organization .. 3

2.0 INITIAL PROFILING AND STRATEGY DEVELOPMENT (PHASE 1) .. 4

2.1 Profiling Analyses .. 4

2.1.1 Modeling Database ... 4

2.1.2 CAMx Profiling Tests ... 4

2.1.3 Results .. 6

2.2 Prioritized List of Speed Improvements ... 12

3.0 CODE IMPROVEMENTS AND TESTING (PHASE 2) ... 14

3.1 Code and Compilation Modifications... 14

3.1.1 Chemical Solver Efficiency and PiG Load Imbalances 14

3.1.2 Additional Modifications ... 15

3.1.3 Interim Speed and Scalability Testing .. 17

3.2 Final Testing .. 22

3.2.1 Speed Tests ... 22

3.2.2 Profiling Results .. 23

3.3 Testing at TCEQ ... 24

4.0 CONCLUSION AND RECOMMENDATIONS .. 26

4.1 Recommendations .. 27

5.0 REFERENCES ... 29

July 2015

ii

TABLES

Table 2-1. Run 1 process and routine CPU time for OMP thread 0. Routines
parallelized with OMP are noted. .. 7

Table 2-2. Run 2 process and routine CPU time for OMP thread 0. Routines
parallelized with OMP are noted. .. 9

Table 2-3. Run 3 process and routine CPU time for OMP thread 0. Routines
parallelized with OMP are noted. .. 10

Table 2-4. Process and routine CPU time for OMP thread 0 resulting from a rerun of
Run 3 (Table 2-3) with the PGF “-Mconcur=nonuma” flag removed.
Routines parallelized with OMP are noted... 11

Table 3-1. CAMx speed test results using CB6r2 with PGF and IFORT compilers. 18

Table 3-2. CAMx speed test results using CB6r2h with PGF and IFORT compilers. 18

Table 3-3. CAMx ozone accuracy test results using CB6r2 with PGF and IFORT
compilers. The accuracy metric is the maximum difference in ozone
(ppm) from the reference case. ... 19

Table 3-4. Average number of iterations taken by the CAMx EBI chemistry solver by
grid, for CB6r2 and CB6r2h. ... 19

Table 3-5. OMP scalability test results shown in Figure 3-1.. 20

Table 3-6. OMP scalability test results shown in Figure 3-2.. 21

Table 3-7. CAMx run times for a single simulation day (May 17, 2012) using the
original model vs. incorporating all speed updates, and domain-wide
maximum ozone differences resulting from the updates. CAMx was
built using PGF and IFORT compilers and run on Intel and AMD
chipsets. .. 23

Table 3-8. Rerun of Run 3 (Table 2-4) with all compiler flag and code updates.
Process and routine CPU time for OMP thread 0. Routines parallelized
with OMP are noted. ... 24

Table 3-9. CAMx runtimes for the unmodified CAMx model and the updated code
with all speed improvements: TCEQ’s 2-day run with MPI and OMP
parallelization over 96 cores. ... 25

Table 3-10. As in Table 3-9, but with PiG turned off. The “Time for PiG” is the
absolute runtime consumed by PiG for each day and for each version
of CAMx. ... 25

FIGURES

Figure 1. TCEQ modeling domains for the 2012 modeling database. 5

Figure 3-1. OMP scalability test results for the unmodified CAMx v6.20 (STD) and
the modified code (UPD) for both PGF and IFORT compilers. Tests

July 2015

iii

used CB6r2 (without PM) and without PiG invoked. Tests did not
include MPI parallelization. The “IDEAL” case represents perfect
parallel scalability. ... 20

Figure 3-2. As in Figure 3-1, but with PiG invoked. ... 21

July 2015

1

EXECUTIVE SUMMARY

Recent additions and updates to the Comprehensive Air quality Model with extensions (CAMx)
have increased demands on computer resources and have extended model runtimes. The
Texas Commission on Environmental Quality (TCEQ) plans to conduct seasonal modeling with
particulate matter (PM) and high resolution grids, all of which increase computational
demands. The objectives of this project included (1) identifying areas of the CAMx code where
improvements would likely have the most impact on model speed, (2) developing and testing
various methods to achieve speed improvements, and (3) documenting the speed and accuracy
impacts of these modifications using a TCEQ modeling dataset.

Ultimately we implemented several modifications that resulted in the following speed
improvements on two of our computer systems using the TCEQ 2012 modeling database with
halogen chemistry (CB6r2h) and the Plume-in-Grid (PiG) module:

 15-30% speed improvement when compiled using the Portland Group (PGF) compiler;

 45-50% speed improvement when compiled using the Intel (IFORT) compiler.

The project was conducted under two phases. In Phase 1, we identified areas of the model
most needing speed enhancements according to analyses conducted using third-party code
profiling tools. Two issues were immediately apparent from our analysis:

 TCEQ should use the “K-theory” vertical diffusion in lieu of the ACM2 option. This is a
runtime option that requires no alternative input data or model compilation, and generates
practically identical results in much less time.

 An unnecessary PGF compiler flag “-Mconcur=nonuma” was found to dramatically increase
CAMx run times with PGF v13.4. TCEQ should remove this option in case their PGF compiler
version is similarly affected by this flag.

Under Phase 1 we found that the chemistry solver, and specifically a single routine that
calculates reaction rates, comprises up to 50% of simulation time and that the addition of
halogen chemistry slowed the model down disproportionately to the number of additional
species and reactions. We also identified certain issues related to our implementation of OMP
parallelization in CAMx.

Phase 2 addressed the highest priorities identified in Phase 1 according to available project
resources and schedule. We implemented and tested several modifications to CAMx code,
OMP parallelization and compiler flags, and found five specific changes that were most
effective in improving model speed. We found that halogen chemistry (CB6r2h) derives more
speedup than the standard CB6r2 mechanism, and that the modifications tend to align model
speed performance across compilers and hardware. Impacts to peak ozone concentrations
from these modifications were found to be well below 1 ppb in cases without PiG, to generally
just below 1 ppb (and in some cases just exceeding 1 ppb) with PiG. We see no impacts to OMP
scalability with these speed improvements.

July 2015

2

We have provided the updated version of CAMx to TCEQ at the close of this project. We
recommend that TCEQ conduct tests over their longer modeling periods to benchmark speed
improvements and evaluate OMP/MPI parallelization combinations. Initial tests performed on
the agency’s computer cluster system, but with much more parallelization, indicate speed
improvements of about 15%, which are consistent with our results. Greater speed
improvements by roughly 8% are realized without the use of PiG, which is insensitive to speed
improvements implemented in this project.

Changes to CAMx code and compilation flags will be incorporated into the next public release of
CAMx. Based on results from this project, we recommend follow-on work to further improve
CAMx speed performance.

July 2015

3

1.0 INTRODUCTION

The Texas Commission on Environmental Quality (TCEQ) uses the Comprehensive Air quality
Model with extensions (CAMx) for ozone State Implementation Plan (SIP) modeling of Texas’
ozone non-attainment areas. The TCEQ is developing new modeling periods that extend over
the entire summer season of 2012. Modeling will include PM chemistry and TCEQ is
considering the use of very high resolution (1 km) grids over key areas of Texas. Recent science
advancements in CAMx, such as halogen chemistry, have added additional chemical species and
reactions to the gas-phase mechanism. All of these updates require more computer resources
and extend the length of model runtimes relative to previous applications. Reducing the
turnaround time of each simulation would increase the number of analyses that can be
performed for the next round of SIP modeling.

1.1 Objectives

The purpose of this Work Order is to improve the efficiency and speed of CAMx. The project
was conducted in two phases. In Phase 1, we identified areas of the model most needing speed
improvements according to analyses conducted using third-party code profiling tools, similarly
to previous projects conducted for TCEQ (Wilson and Johnson, 2010; ENVIRON, 2012). From
these results, an initial strategy plan was developed that outlined our findings and set a
prioritized list of model modifications. In Phase 2, we implemented and tested modifications to
CAMx code, OMP parallelization and compiler flags, addressing the highest priorities listed in
the strategy plan according to available resources and schedule. We have identified other
areas for improvement that could be accomplished in follow-on work. The modified code has
been transferred to TCEQ for further validation and testing on the TCEQ computer system.

1.2 Report Organization

This section describes the purpose of this work. Section 2 presents findings from Phase 1 of the
project and lists our initial strategy plan based on those results. Section 3 describes specific
CAMx code updates, rationale, and testing results under Phase 2 of the project. Section 4
presents our conclusions and recommendations for future work.

July 2015

4

2.0 INITIAL PROFILING AND STRATEGY DEVELOPMENT (PHASE 1)

Several CAMx screening tests were run using a compiler-based speed profiler to identify specific
model subroutines that should be targeted for specific efficiency improvements or that would
potentially benefit from improved parallelization. The testing dataset was selected with the
TCEQ project manager and includes nested grids, Plume-in-Grid (PiG), halogen chemistry, and
particulate matter (PM). A Phase 1 strategy plan (Emery et al., 2015) was developed that
documented these tests and developed a prioritized list of CAMx code modifications that was
expected to achieve the most effective set of modifications for the available schedule and
resources. After reviewing the strategy plan, TCEQ authorized us to proceed with Phase 2.

2.1 Profiling Analyses

2.1.1 Modeling Database

We downloaded the 2012 CAMx modeling database from the TCEQ FTP site1 on March 10,
2015. This dataset spans the historical period of May 16 through June 30, 2012 and includes
three nested grids with 36, 12, and 4 km horizontal grid resolution (Figure 1), all with 28 vertical
layers extending from the surface to an altitude of roughly 15 km. The modeling domain is
established on the standard National RPO Lambert Conic Conformal projection. The input
datasets for this application include meteorology, emissions, initial/boundary conditions, land
cover, and other ancillary chemical data needed to run CAMx. We did not develop or modify
any datasets.

2.1.2 CAMx Profiling Tests

All CAMx profiling tests were conducted on a single isolated multi-core Linux server to remove
any influences from extraneous CPU loads and network traffic:

 Quad 16-core AMD Opteron 6380 chipset, 2.5 GHz

 Linux/CentOS 6.3

 Portland Group Fortran90 (PGF90) Workstation v13.4

 MPICH v3.0.4

This is the same workstation employed for TCEQ’s Near-Real Time ozone modeling projects
(Johnson et al., 2013, 2015).

CAMx v6.20 (ENVIRON, 2015) was compiled using PGF90 with profiling invoked for OMP
parallelization. Our current PGF90 license does not support profiling for MPI parallelization.
We installed a trial license for the Portland Group’s Cluster Development Kit (CDK) for PGF90
v15.3, which is advertised to support profiling for MPI. However, Portland Group subsequently
informed us that bugs precluded MPI profiling and indicated that this was scheduled to be fixed
in the next CDK release (v15.4). Therefore, MPI profiling was not performed.

1 ftp://amdaftp.tceq.texas.gov/pub/TX/camx/basecase/bc12_12jun.reg3a.2012_wrf361_p2a_i2_a/

July 2015

5

Figure 1. TCEQ modeling domains for the 2012 modeling database.2

The following three CAMx configurations were profiled under Phase 1:

1. May 17 (restart): 3 grids, PiG, ACM2 vertical mixing, chemistry CB6r2/CF (CB6r2 + PM), no
compiler optimization, OMP parallelization (8 threads).

2. May 17 (restart): 3 grids, PiG, K-theory vertical mixing, chemistry CB6r2/CF (CB6r2 + PM),
“O2” compiler optimization, OMP parallelization (8 threads)

3. May 17 (restart): 3 grids, PiG, k-theory vertical mixing, chemistry CB6r2h (no PM), “O2”
compiler optimization, OMP parallelization (8 threads)

Run times during the first simulation day (May 16) may not be representative of other days of
the episode due to chemical spin-up from initial conditions. Therefore, we conducted code
profiling for May 17 to separate reported processor times from the chemical spin-up.

2 https://www.tceq.texas.gov/airquality/airmod/data/domain

July 2015

6

2.1.3 Results

2.1.3.1 Run 1

Table 2-1 presents Run 1 timing results from OMP thread 0 (consisting of all model processes).
The sum of all processes and individual routines listed comprised 95% of the 13,702 second
total CPU time for thread 0.

Chemistry used the majority of time, with more than 23% spent in gas-phase chemistry versus
less than 3% in PM chemistry. The EBIRATE routine alone used one-third of time spent in gas
chemistry. EBIRATE calculates linear combinations of chemical rates for all reactions in the gas-
phase mechanism and is implemented in a manner that accesses the chemical rate array non-
sequentially. The EBIRXN routine provides an interesting comparison because EBIRXN performs
similar operations to EBIRATE but EBIRXN accesses memory more sequentially and consumes
less CPU time (4% as compared to 8%). Non-sequential memory access may be a cause of
inefficiency in EBIRATE. We assigned a high priority to making EBIRATE more efficient.

Diffusion consumed the second most CPU time after chemistry. The majority of time (11%) was
spent in the ACM2 vertical diffusion solver whereas horizontal diffusion used less than 5%.
Using the default K-theory vertical diffusion should reduce total time in diffusion to less than
10% of total run time.

The process labelled “OMP” includes Fortran library functions to manage parallelization. OMP
added 13% of overhead to the run time for thread 0. About 5% of time was spent in “barrier”
functions, indicating load imbalances where completed threads wait for the slowest threads to
finish. We identified 3 routines with OMP load imbalances: PIGDRIVE, TRIDIAG, and ZADVEC.
By far the largest OMP load imbalance existed in PIGDRIVE which applies OMP parallelization to
the loop over puff chemistry in first half of the routine but not to the loop over puff growth and
dumping in the second half. The load imbalance in the puff chemistry loop was mostly likely
caused by skipping puffs because they are inactive, outside the current grid of interest, or
chemistry is bypassed or highly simplified for strategic reasons. Prior to the effort to accelerate
PiG chemistry (Emery et al., 2013), implementing OMP just for chemistry was an effective
strategy for PIGDRIVE. Now that PiG chemistry runs quickly the parallelization of the
growth/dumping loop should be considered. TRIDIAG and ZADVEC are called in vertical
transport (advection and diffusion) where load imbalances most likely result from skipping grid
columns where the solution is replaced by results from an underlying nested grid, and
secondarily from variations in solution times among different grid columns.

The process labelled “System” includes Fortran intrinsic math functions (e.g., logarithms) and
management processes such as dynamic allocation. System routines took 10% of total runtime.
It was not originally clear how this process could be improved for speed, but in Phase 2 we
identified a compiler option (IEEE) that significantly increases runtime. This option forces math
expressions to be consistently calculated among different compilers, resulting in identical CAMx
results between PGF90 and Intel compilations at the cost of execution speed.

July 2015

7

Table 2-1. Run 1 process and routine CPU time for OMP thread 0. Routines parallelized with
OMP are noted.

Process Routine OMP Time (s) Time (% of total)

Chemistry
26%

ebirate2 1,033 8%

ebisolv 495 4%

chemdriv 415 3%

hr_hox2 385 3%

ebirxn2 338 2%

hr_nox2 214 2%

hr_nxy2 106 <1%

hr_pan2 93 <1%

calcact 90 <1%

ktherm 79 <1%

Diffusion
16%

matrix 803 6%

diffus 624 5%

vdiffacm2 528 4%

tri 132 1%
OMP
13%

_mp_taskv2_init_contexts 307 2%

_mp_barrierw 283 2%

_mp_barrier 260 2%

_mp_get_schedule 163 1%

_mp_p2 162 1%

_mp_barrierr 159 1%

_mp_cslave 157 1%

_mp_cdecl 94 <1%

_mp_create_team 85 <1%

_mp_get_bind 76 <1%

V Advection
11%

vrtslv 620 5%

tridiag 402 3%

zadvec 252 2%

zrates partial 72 <1%

System
10%

__mth_i_dpowd 208 2%

_int_free 188 1%

__mth_i_dexp 187 1%

__mth_i_dexp2 172 1%

__c_mzero4 164 1%

__mth_i_dlog2 156 1%

__mth_i_exp 122 <1%

_int_malloc 74 <1%

__c_mcopy4 72 <1%

H Advection
9%

hadvppm 933 7%

xyadvec 237 2%

PiG
5%

pigdrive partial 490 4%

virtdump 103 <1%

TUV
2%

drvtuv 138 1%

pp2str 83 <1%

Output
1%

aggreg 72 <1%

average 111 <1%

Emissions 1% Emiss partial 137 1%

July 2015

8

2.1.3.2 Run 2

Table 2-2 presents Run 2 timing results from OMP thread 0 (consisting of all model processes).
The sum of all processes and individual routines listed comprised 93% of the 12,763 second
total CPU time for thread 0. Total run time decreased 7% relative to Run 1.

Chemistry continued to use the most time, increasing to more than 28% spent in gas-phase
chemistry versus less than 3% in PM chemistry. EBIRATE remained one-third of time spent in
gas-phase chemistry and the absolute time spent in EBIRATE increased over Run 1 indicating
that compiler optimization was ineffective, if not detrimental for that routine.

OMP and System processes both increased relative to Run 1. OMP added 14% of overhead to
the run time for thread 0, with 5% of time spent in “barrier” functions. System routines took
11% of total run time. With the removal of ACM2, run time spent in diffusion dropped to 8%
(as anticipated) and diffusion ranked below horizontal and vertical advection. The PiG process
improved relative to Run 1 (possibly due to optimization) while the output process was
relatively slower.

2.1.3.3 Run 3

Table 2-3 presents Run 3 timing results from OMP thread 0 (consisting of all model processes).
The sum of all processes and individual routines listed comprised 92% of the 15,519 second
total CPU time for thread 0. Total run time increased 22% relative to Run 2.

Chemistry continued to take the most time with gas-phase chemistry increasing to 48% of total
run time with the introduction of halogen chemistry. EBIRATE took nearly half of the time
spent in gas chemistry (a quarter of total run time) due to the larger number of reactions and
species in the halogen version. EBIRATE consumed four times more CPU than EBIRXN (21% vs.
5%) suggesting that revisions to EBIRATE could realize substantial speedup for larger chemical
mechanisms such as CB6r2h. OMP and System processes both decreased relative to Run 2.
Run times for all other processes remained roughly similar to Run 2.

Subsequently we discovered that PGF v13.4 slowed the model considerably relative to our
legacy compiler (v8.0). We tracked the cause to a particular PGF compiler flag (“-Mconcur=
nonuma”). This flag was left over from earlier versions of CAMx when the compilation was set
to build static executables, whereas now the compilation builds dynamic executables. Removal
of this flag has no impact on model results other than speed. It is unclear at which PGF version
(between v8 and v13) this flag began to negatively impact model speed for dynamic builds. We
have removed this flag from all subsequent testing documented in this report, and have
included this change in the updated model delivered to TCEQ.

Profiling for Run 3 was repeated with the “nonuma” flag removed. Table 2-4 presents timing
results from OMP thread 0 (consisting of all model processes). The sum of all processes and
individual routines listed comprised 93% of the 11,952 second total CPU time for thread 0.
Total run time decreased 23% relative to Run 3 with “nonuma”. Although the order and
relative time spent in each process remained similar to Table 2-3, the reduction in time spent in

July 2015

9

Table 2-2. Run 2 process and routine CPU time for OMP thread 0. Routines parallelized with
OMP are noted.

Process Routine OMP Time (s) Time (% of total)

Chemistry
31%

ebirate2 1252 10%

Ebisolv 540 4%

ebirxn2 492 4%

hr_hox2 462 4%

Chemdriv 377 3%

hr_nox2 228 2%

hr_nxy2 104 <1%

hr_pan2 92 <1%

Calcact 72 <1%

Khetero 64 <1%

OMP
14%

_mp_barrier 333 3%

_mp_taskv2_init_contexts 307 2%

_mp_cpenter 215 2%

_mp_p2 166 1%

_mp_has_running_subtasks 159 1%

_mp_barrierw 141 1%

_mp_barrierr 134 1%

_mp_cdeclp 94 <1%

_mp_get_blist 84 <1%

_mp_create_team 74 <1%

System
11%

__mth_i_dpowd 208 2%

_int_free 205 2%

__mth_i_dexp 168 1%

__mth_i_dexp2 163 1%

__mth_i_dlog2 153 1%

_wordcopy_fwd_aligned 151 1%

__mth_i_exp 133 1%

_int_malloc 84 <1%

V Advection
11%

Zadvec 477 4%

Tridiag 379 3%

Vrtslv 348 3%

Zrates partial 71 <1%

H Advection
9%

Hadvppm 906 7%

Xyadvec 224 2%

Diffusion
8%

Diffuse 540 4%

Tridiag 379 3%

Vdiffimp 116 <1%

PiG 3% Pigdrive partial 423 3%

Output
3%

Massum 169 1%

Average 139 1%

Aggreg 72 <1%

TUV
2%

Drvtuv 125 1%

pp2str 89 <1%

Emissions 1% Emiss partial 130 1%

July 2015

10

Table 2-3. Run 3 process and routine CPU time for OMP thread 0. Routines parallelized with
OMP are noted.

Process Routine OMP Time (s) Time (% of total)

Chemistry
48%

ebirate3 3250 21%

hr_hox3 1028 7%

ebisolv 869 6%

ebirxn3 770 5%

hr_nox3 606 4%

chemdriv 367 2%

hr_nxy3 259 2%

hr_pan3 227 1%

kphoto 62 <1%

OMP
12%

_mp_taskv2_init_contexts 330 2%

_mp_barrier 309 2%

_mp_cpenter 216 1%

_mp_barrier2 167 1%

_mp_has_running_subtasks 167 1%

_mp_p2 166 1%

_mp_threads_at_level 164 1%
_mp_barrierw 161 1%

_mp_create_team 136 <1%

_mp_barrierr 105 <1%

V Advection
8%

zadvec 457 3%

tridiag 364 3%

vrtslv 343 2%

zrates partial 71 <1%

Diffusion
7%

diffuse 512 3%

tridiag 364 3%

vdiffimp 114 <1%

H Advection
7%

hadvppm 900 6%

xyadvec 232 1%

System
5%

_int_free 184 1%

__mth_i_dexp2 136 <1%

__mth_i_dlog2 128 <1%

__mth_i_dpowd 96 <1%

_int_malloc 92 <1%

PiG 3% pigdrive partial 431 3%

Output
2%

massum 176 1%

average 87 <1%

aggreg 74 <1%

Emissions 1% Emiss partial 130 1%

July 2015

11

Table 2-4. Process and routine CPU time for OMP thread 0 resulting from a rerun of Run 3
(Table 2-3) with the PGF “-Mconcur=nonuma” flag removed. Routines parallelized with OMP
are noted.

Process Routine OMP Time (s) Time (% of total)

Chemistry
51%

ebirate3 2,715 23%

hr_hox3 868 7%

ebirxn3 659 6%

hr_nox3 513 4%

ebisolv 471 4%

chemdriv 348 3%

hr_nxy3 228 2%

hr_pan3 196 2%

V Advection
9%

tridiag 316 3%

zadvec 306 3%

vrtslv 257 2%

zrates partial 92 <1%

Diffusion
9%

diffuse 539 5%

tridiag 364 3%

vdiffimp 114 <1%
H Advection
7%

hadvppm 651 5%

xyadvec 188 2%

PiG 5% pigdrive partial 593 5%

OMP 5% _mp_barrier 591 5%

System
4%

__c_mzero4 151 1%

__mth_i_dexp2 136 1%

__mth_i_dlog2 131 1%
__mth_i_dpowd 91 <1%

Output
3%

massum 172 1%

average 85 <1%

aggreg 73 <1%
Emissions 1% Emiss partial 178 1%

OMP routines was the largest impact, from 12% to just 5% (about 40% of the total reduction in
run time).

July 2015

12

2.2 Prioritized List of Speed Improvements

At the close of Phase 1, we developed a list of recommended changes based on the profiling
analyses described above and in accordance with our understanding of potential speed
impediments at the time. We ranked the actions from highest to lowest priority considering
ease of implementation and likely impact to run time. Actions toward the bottom of the list
require greater effort and more fundamental changes to the CAMx code structure, but carry
less certainty for speed improvements. Whereas our understanding of factors impacting CAMx
speed have evolved with our analyses and tests conducted under Phase 2, recommendations
beyond the first four remain relevant and should be considered for future improvements.
Additional details for each item below are provided in the Phase 1 report (Emery et al., 2015).

1. We recommend that K-theory be used in lieu of ACM2. This is a runtime option that
requires no alternative input data or model compilation. ACM2 adds significantly to CAMx
run time but results in similar concentration patterns relative to the default K-theory
option. Furthermore, ACM2 is not compatible with all CAMx Probing Tools, requiring the
use of K-theory for any decoupled direct method (DDM) sensitivity or process analysis
applications. The ACM2 solver was developed by EPA; we understand that EPA is improving
the ACM2 solver and will distribute it with the release of CMAQ v5.1 in September 2015.

2. Revise EBIRATE to employ a more efficient strategy. Test several approaches to maximize
efficiency. Improving the efficiency of EBIRATE is a high priority.

3. Add OMP parallelization to PIGDRIVE around the loop that performs puff growth and mass
dumping to the grid.

4. Test alternative ways to parallelize loops in transport processes (vertical/horizontal
advection and diffusion) to improve OMP load balance and efficiency, if possible.

5. Apply F90 vector methods to variable assignments where possible, rather than using explicit
loops and array index pointers.

6. Improve MPI load balancing by considering spatial distributions of PiG sources and
potentially other factors. Run times for specific MPI sub-domains may be influenced by the
workload required to process PiG puffs.

7. Restructure the order of dimensions in major multi-dimensional variable arrays
(concentration, meteorology, and other fields) for improved memory caching in local
routines.

8. Revise process splitting order (in combination with restructuring the dimensions of variable
arrays). The goal would be to minimize the amount of memory caching and time taken in
assigning local variable arrays from the major concentration and meteorological arrays. A
more efficient approach would be to group all processes that operate on the same spatial
dimension.

The modification noted in point (8) above would likely translate to improved MPI scaling
efficiency as well by reducing the number of overlapping (shared) grid cells among MPI sub-
domains. Overlapping cells are used as internal “boundary conditions” through which chemical
mass is passed among the sub-domains. The number of overlapping cells is currently 5, and this

July 2015

13

is based specifically on the process order currently implemented in CAMx; 5 overlapping cells
are needed to ensure that an MPI application results in exactly the same concentration fields as
a serial run. Reordering the physical processes in the model could conceivably reduce the
overlap to 2 or 3.

As an example, consider a moderate grid of 120x90 grid cells with MPI applied over 16 cores, or
4x4 MPI sub-domains. The addition of 5 overlap cells surrounding each sub-domain results in
67% more grid cells to solve (i.e., 67% additional overhead). This translates to a best scaling
efficiency of 60% for this configuration, meaning a run on 16 cores is at best equivalent to 9.6
cores (ignoring other forms of overhead involving inter-core network memory passes and MPI
management, which in reality further reduce scalability). Looking at this another way, if that
run takes 16 hours/day on 1 core, 100% scaling efficiency would theoretically take 1 hour on 16
cores, but with 5 overlap cells would take at best 1.7 hours. Doubling MPI cores to 32 further
reduces scaling efficiency to 49% (effectively 15.7 cores); the 16 hour/day serial run would
theoretically take 0.5 hours, but with 5 overlap cells would take 1 hour. If overlap cells could be
reduced to just 2 in each dimension, scaling efficiency would be 80% for 16 cores (12.8 effective
cores) and 73% for 32 cores (23.4 effective cores). In this case, a 16 hour serial run would be
reduced to 1.25 hours with 16 cores and 0.7 hours with 32 cores.

July 2015

14

3.0 CODE IMPROVEMENTS AND TESTING (PHASE 2)

We carefully considered, implemented and tested the effects of several targeted modifications
to CAMx v6.20 based on the Phase I Strategy Plan. Impacts to model speed were compared to
the original code for each modification. Our approach focused on addressing the highest
priority issues to the extent that the project schedule allowed.

We conducted testing using two datasets: (1) certain interim assessments of code and compiler
option changes were performed using the standard CAMx test case that is distributed with the
model at www.camx.com; (2) other assessments and all final testing were performed using the
TCEQ modeling database employed in Phase 1. Testing included variable OMP and MPI parallel
processing to gauge efficiency gains and to verify consistent model output, with appropriate
quality assurance steps and code review. Our goals for this phase included improving model
speed for a set number of processors, and to the extent possible, extend speed gains out to
larger numbers of processors than can be currently realized (i.e., improve parallelization
“scalability”).

3.1 Code and Compilation Modifications

3.1.1 Chemical Solver Efficiency and PiG Load Imbalances

Our early efforts under Phase 2 focused on improvements to the EBIRATE chemistry routine
and OMP imbalances related to sparse PiG puff operations (chemistry, growth, dumping).

EBIRATE updates net production and loss rates for all gas species at each chemical time step by
calculating linear combinations of individual reaction rates in a manner that accesses the
chemical rate array non-sequentially. At the time we expected non-sequential memory access
to be a cause of inefficiency. EBIRATE is one of several chemistry subroutines that are
computer-generated by the Chemical Mechanism Compiler (CMC). The CMC codes EBIRATE in
a straightforward manner without any specific strategy for accessing memory efficiently.

We considered several approaches to improve EBIRATE. First, we replaced EBIRATE with an
optimized linear algebra routine available in the Netlib LAPACK library
(http://www.netlib.org/lapack/), but this resulted in slower execution speed. Second, we
wrote a new vector multiplication routine specific to EBIRATE, but that was also slower. Third,
we restructured array indices and loop order, but that had only a marginal impact on EBIRATE
speed. Therefore, these approaches were dropped from further consideration.

Overhead associated with OMP parallelization is exacerbated by load imbalance among
processor threads. This can occur when successive iterations through a parallelized loop have
very different workloads, such as the extreme example when some iterations have nothing to
do (e.g., an empty puff or a grid cell that is skipped because it contains a nest) but other
iterations must perform a heavy workload (e.g., chemistry). We expected that PiG processes in
particular are a source of significant OMP load imbalance because PiG memory arrays become
quite sparse as puff populations grow and individual puffs are deactivated at different times.
We developed and implemented a new routine to condense the PiG variable arrays at each

July 2015

15

time step, thereby maintaining active puffs in sequentially-ordered memory structures.
However, only marginal speed impacts were realized in tests conducted with the 2012 TCEQ
dataset. This modification was dropped from further consideration in this project, but we may
continue to test it for a variety of PiG applications in the future.

Another potential issued identified in Phase 1 was the lack of OMP parallelization applied to the
PiG growth and dumping section of PIGDRIVE. Implementing OMP around the puff
growth/diffusion loop required substantial modifications to the PIGDRIVE routine to allow
common memory structures (i.e., three-dimensional gridded concentrations) to be
mathematically combined with OMP thread-private puff variables (i.e., mass to be dumped).
Again, no significant speedup resulted from this change and so it was dropped from further
consideration in this project. However, it may be implemented in future efforts to expand OMP
to other areas of the code.

3.1.2 Additional Modifications

During the course of our investigations under Phase 2, several additional code modifications
were implemented and tested. Each is described below.

3.1.2.1 IEEE and Mixed-Mode Math

We found that CAMx speed is impacted by a particular compiler flag that forces math
expressions to be calculated using standard IEEE methods (i.e., –Kieee in PGF90 and -mieee-fp
in IFORT). Without these flags, compilers are free to calculate math expressions using their
own specific and often optimized strategies. Moreover, each compiler handles “mixed mode”
math differently (e.g., real = real/integer, real = real*dreal, real = real**integer)3. Removal of
IEEE flags can speed up the model, but leads to differences in mathematical calculations
(particularly for mixed mode math) and thus model results. Up through v6.20, the CAMx
“makefile” has included IEEE flags by default to ensure that nearly identical results are achieved
across different compilers.

Elimination of mixed mode math throughout CAMx would reduce the dependency on IEEE flags
(e.g. converting real=real/integer to real=real/float(integer)). Most instances are properly
handled in CAMx, but it would take an extensive and concerted effort to review the entire
model code to catch improper mixed mode statements. Several changes involving mixed mode
algebra were made in the EXPTBL routine (which computes rate constants for gas-phase
chemistry) and this did reduce dependency on the IEEE compiler flags. Tests suggest that the
most important issues are with mixed single/double precision math. For one such case in a dry
deposition routine IFORT resulted in a NaN when the IEEE flag was removed, but PGF
completed successfully. The CAMx code was reviewed for such improper mixed single/double
precision statements and fixed where necessary.

We plan to complete a systematic review of the entire CAMx code for mixed mode math in the
future, although test results described below suggest that remaining differences from removing

3 “dreal” refers to a double-precision real variable, “**” refers to raising to a power.

July 2015

16

IEEE flags are small for ozone when PiG is not used. Larger but short-lived differences occur
with PiG due to small changes in puff behavior (e.g., when and where mass dumping to the grid
occurs). Larger differences may also occur for some PM species, particularly nitrate, and this is
a result of how the ISORROPIA thermodynamic portioning algorithm is designed. The IEEE
option is now an option in the CAMx makefile, and by default is not engaged.

3.1.2.2 EBI Solver Convergence

One reason why halogen chemistry runs more slowly than CB6r2 is that the EBI solver
converges more slowly in high model layers. The solver was converging halogen species to
0.1% even when they had very small concentrations. We revised the EBI solver convergence

criterion to be more tolerant of relative error when absolute error is smaller than 110-8 ppm.
In tests described below, run time for the halogen mechanism was about 20% faster with this
change, but nearly unchanged for CB6r2. Additional speedup for halogen chemistry may
require EBI solver customization.

3.1.2.3 Streamlining EBIRATE

In CAMx v6.20 EBIRATE calculates terms for several species (NO, NO2, O3, OH, HO2, O1D, O,
NO3, N2O5, PAN, C2O3, HONO, PNA) that the EBI solver does not need because these species
are solved more efficiently by other EBI solver subroutines. These terms are only needed to
calculate rate constant sensitivity when the Decoupled Direct Method (DDM) probing tool is
invoked and is instructed to track these specific sensitivities. Commenting out these terms in
CB6r2 demonstrated some speedup and no loss of accuracy (as expected). A more
sophisticated and permanent solution is needed to modify the CMC and produce a dedicated
subroutine that calculates these terms only when they are needed for DDM rate constant
sensitivity.

3.1.2.4 Revised OMP Loop Scheduling and Collapsing

In CAMx v6.20 all OMP parallel do loops are scheduled as “dynamic”. This means that threads
are allocated to cores dynamically as the loop executes, resulting in good load balance at the
expense of overhead for managing dynamic scheduling. The “static” option incurs much lower
overhead than “dynamic”. Loops with inherently good load balance (i.e., all loop iterations
have the same computational load) should be scheduled as “static”, meaning loop iterations
are distributed evenly to cores when loop execution starts. A middle ground is called “guided”,
but tests with that option resulted in the slowest run time.

Load imbalances within CAMx OMP loops occur mostly when operations are skipped for grid
cells covering an underlying nested grid (this happens for chemistry, vertical advection and
diffusion). A more extreme issue exists for OMP looping in wet scavenging where non-raining
grid columns are skipped, and for OMP looping over sparse PiG vectors as described in Section
3.1.1. These loops must remain scheduled as “dynamic”. In the future, we may consider
eliminating the nested grid checks to skip computations, and scheduling all such loops as
“static”, thus trading more work for better load balance and potentially improving OMP
scalability to larger numbers of threads.

July 2015

17

In CAMx v6.20 only the outermost loops are scheduled for OMP parallelization, offering fewer
possible threads to distribute over cores. The OMP “collapse(2)” option can be applied to two
immediately nested loops (outer and inner) so that they are scheduled together and act as a
one loop over a single vector.

Based on test results for individual loops, we updated the OMP scheduling as follows (changes
indicated in bold):

aggreg.f: c$omp do schedule(static)
chemdriv.f: c$omp do schedule(dynamic) collapse(2)
diffus.f: c$omp do schedule(dynamic)
drydep.f: c$omp do schedule(static)
emiss.f: c$omp do schedule(static)
wetdep.f: c$omp do schedule(dynamic)
xyadvec.f: c$omp do schedule(static)
zadvec.f: c$omp do schedule(dynamic)
zrates.f: c$omp do schedule(static)

Additionally, we added OMP loop scheduling in DRVTUV, which calculates in-line cloud and
aerosol adjustments to clear-sky photolysis rates for each grid cell. This is another case for
potential load imbalances as iterations are skipped for night conditions and the workload is
reduced for non-cloudy grid cells.

drvtuv.f: c$omp do schedule(static) collapse(2)

3.1.3 Interim Speed and Scalability Testing

The four modifications described in Section 3.1.2 were tested to evaluate impacts to model
speed and OMP scalability. Interim tests were conducted for the second day of the 2-day CAMx
test problem distributed with the model at www.camx.com. The domain consists of a relatively

small (6868) master grid at 36 km resolution covering the US Midwest, and a nested grid

(92115) at 12 km resolution covering the upper Midwest. Both grids have 16 vertical layers.
PiG was turned off for the speed tests but turned on for OMP scalability tests. Two gas-phase
chemical mechanisms were tested: CB6r2 and CB6r2h, both without PM.

Speed and accuracy tests were conducted on a dual 12-core Intel Xeon X5660 chipset (2.8 GHz)
using 6 OMP threads for each run, but no MPI parallelization. Runs were conducted with PGF
and IFORT compilations. Three runs were performed simultaneously with local I/O to minimize
impacts from network latency. Model execution speed was metered using the Linux
“/usr/bin/time” utility.

Tables 3-1 and 3-2 show the run time and accuracy results for (1) groups of CAMx updates and
(2) removal of the IEEE compile flag. The run labelled “CAMx v6.20” is the unmodified version
of the model. The modifications labelled “updates” include changes to EBI solver convergence
and OMP loop scheduling. The modification labelled “trim” refers to EBIRATE streamlining to
remove DDM rate sensitivities.

July 2015

18

Table 3-1. CAMx speed test results using CB6r2 with PGF and IFORT compilers.
 CB6r2 (no PM) PGF IFORT

Seconds Percent Seconds Percent

CAMx v6.20, IEEE on 1329 100% 1521 100%

CAMx updates, IEEE on 1262 95% 1322 87%

CAMx updates, IEEE off 1125 85% 882 58%

Updates & trim, IEEE off 1028 77% 826 54%

Table 3-2. CAMx speed test results using CB6r2h with PGF and IFORT compilers.
 CB6r2h (no PM) PGF IFORT

Seconds Percent Seconds Percent

CAMx v6.20, IEEE on 2947 100% 3385 100%

CAMx updates, IEEE on 2273 77% 2308 68%

CAMx updates, IEEE off 2036 69% 1678 50%

Our findings from these results are:

1. Both the “updates” and removal of IEEE compiler flags improve speed;

2. Halogen CB6r2h derives more speedup from the updates than CB6r2;

3. IFORT derives more speedup from removing IEEE flags than PGF;

4. Removing IEEE flags appears to be safe after making the updates;

5. The “trim” modification gives some speedup but requires a CMC update to be automated;

6. IFORT ends up with a substantial (~20%) speed advantage over PGF.

Table 3-3 lists the largest differences in ozone (ppm) for the CB6r2 cases (Table 3-1). The
reference case is chosen as “CAMx updates, IEEE on” with PGF because one of the CAMx

updates changed EBI solver accuracy. Maximum differences of up to ~110-4 ppm (0.1 ppb) are
considered acceptable. We also reviewed results for species other than ozone and found
nothing alarming.

Table 3-4 shows the average number of iterations taken by the EBI chemistry solver, over all
cells of both grids, for CB6r2 and CB6r2h in the tests described above. The EBI solver
convergence update had only a small impact for CB6r2, but the update greatly reduced the
number of iterations for CB6r2h leading to model speedup. However, CB6r2h continued to
require more iterations than CB6r2 after the update.

July 2015

19

Table 3-3. CAMx ozone accuracy test results using CB6r2 with PGF and IFORT compilers. The
accuracy metric is the maximum difference in ozone (ppm) from the reference case.

CB6r2 (no PM) PGF IFORT

Grid 1 Grid 2 Grid 1 Grid 2

CAMx v6.20, IEEE on 9.7710
-5 1.0510

-4 9.7610
-5 1.0510

-4

CAMx updates, IEEE on reference reference 3.5010
-5 9.5810

-5

CAMx updates, IEEE off 2.4410
-6 4.2810

-6 3.6110
-5 6.6410

-5

Updates & trim, IEEE off 2.4610-6 4.2810-6 3.6110-5 6.6410-5

Table 3-4. Average number of iterations taken by the CAMx EBI chemistry solver by grid, for
CB6r2 and CB6r2h.

Mechanism Grid 1 Grid2

CB6r2 – original EBI solver 6.5 5.0

CB6r2 – updated EBI solver 5.7 4.7

CB6r2h – original EBI solver 16.6 10.4

CB6r2h – updated EBI solver 7.7 5.7

OMP scalability tests were conducted on a dual 12-core Intel Xeon X5660 chipset (2.8 GHz)
using PGF and IFORT builds for both the unmodified CAMx v6.20 (labelled “STD”) and all code
updates described in Section 3.1.2 (labelled “UPD”). MPI parallelization was excluded. Each
run was performed sequentially with no extraneous workload that might confound the results.
Figure 3-1 and Table 3-5 show the results of OMP scalability tests using CB6r2 without PiG
invoked. The term “effective threads” indicates the net equivalent speedup for the given
number of actual assigned threads due to un-parallelized areas of the model and various
impediments from overhead processes. A perfectly scaling code would align along the 1:1 line
in Figure 3-1. Although results were similar among CAMx and compiler versions, the IFORT STD
case scaled best perhaps because it is the slowest (least efficient floating point execution).

OMP scalability tests were repeated on the same machine for CB6r2 with PiG invoked. Results
are shown in Figure 3-2 and Table 3-6. A notable drop in scalability occurred with the
introduction of PiG. However, the IFORT update case resulted in odd performance for
unexplained reasons.

July 2015

20

Figure 3-1. OMP scalability test results for the unmodified CAMx v6.20 (STD) and the
modified code (UPD) for both PGF and IFORT compilers. Tests used CB6r2 (without PM) and
without PiG invoked. Tests did not include MPI parallelization. The “IDEAL” case represents
perfect parallel scalability.

Table 3-5. OMP scalability test results shown in Figure 3-1.

Threads

PGF IFORT

CAMx v6.20 CAMx Updates CAMx v6.20 CAMx Updates

Sec Eff Threads Sec Eff Threads Sec Eff Threads Sec Eff Threads

1 4429 1.0 3786 1.0 5797 1.0 3065 1.0

4 1354 3.3 1170 3.2 1770 3.3 933 3.3

6 1058 4.2 908 4.2 1323 4.4 708 4.3

8 865 5.1 726 5.2 1059 5.5 576 5.3

10 775 5.7 649 5.8 938 6.2 509 6.0

12 720 6.2 591 6.4 854 6.8 472 6.5

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Ef
fe

ct
iv

e
Th

re
ad

s

Threads

PGF STD

PGF UPD

IFORT STD

IFORT UPD

IDEAL

July 2015

21

Figure 3-2. As in Figure 3-1, but with PiG invoked.

Table 3-6. OMP scalability test results shown in Figure 3-2.

Threads

PGF IFORT

CAMx v6.20 CAMx Updates CAMx v6.20 CAMx Updates

Sec Eff Threads Sec Eff Threads Sec Eff Threads Sec Eff Threads

1 4781 1.0 4149 1.0 6221 1.0 3460 1.0

4 1530 3.1 1338 3.1 1956 3.2 1132 3.1

6 1223 3.9 1053 3.9 1533 4.1 934 3.7

8 1006 4.8 871 4.8 1259 4.9 846 4.1

10 924 5.2 779 5.3 1137 5.5 732 4.7

12 848 5.6 722 5.7 1042 6.0 661 5.2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

E
ff

ec
ti

ve
 T

h
re

ad
s

Threads

PGF STD

PGF UPD

IFORT STD

IFORT UPD

IDEAL

July 2015

22

3.2 Final Testing

3.2.1 Speed Tests

A final set of model tests were conducted to compare speed and ozone concentration
differences resulting from all of the code and compiler modifications. Specifically these
modifications included:

 Removal of IEEE compiler flags

 Improvements to EBI convergence criteria

 Streamlining the EBIRATE routine to remove DDM-specific code

 Revised OMP Loop Scheduling and Collapsing

 Improvements to a few instances of mixed-mode math in chemistry and dry deposition

Tests were conducted using the same TCEQ 2012 modeling database employed during Phase 1
of the project. A single day (May 17) was run with the same model configuration as “Run 3”
described in Section 2.1.2:

 3 grids (36, 12, 4 km)

 PiG turned on

 K-theory vertical mixing

 CB6r2h chemistry mechanism

 No Probing Tools

Both modified and un-modified versions of CAMx were compiled using PGF compiler v13.4-0
and Intel (IFORT) compiler v15.0.2.164. Both compilers were installed on an Intel Xeon E5440,
and so all compilations were performed on that machine. The standard “O2” compiler
optimization was invoked for all compilations. The PGF flag “-Mconcur=nonuma” was removed
in all cases.

Both PGF and IFORT builds of unmodified and modified versions of CAMx were run on two
different computers to test differences among compilers and hardware, resulting in 8 separate
runs. The specifications for the two computers are listed below:

 Dual 12-core Intel Xeon X5660 chipset, 2.8 GHz, 48 GB RAM

 Quad 16-core AMD Opteron 6380 chipset, 2.5 GHz, 128 GB RAM

All runs on both machines utilized 24 cores total, divided among 6 MPI sub-domains by 4 OMP
threads, in accordance with scripts we received from TCEQ. Table 3-7 displays run times for the
single-day simulations, resulting relative speedup between the unmodified and modified
model, and domain-wide maximum surface ozone differences on each of the three grids
between the unmodified and modified model.

July 2015

23

Table 3-7. CAMx run times for a single simulation day (May 17, 2012) using the original
model vs. incorporating all speed updates, and domain-wide maximum ozone differences
resulting from the updates. CAMx was built using PGF and IFORT compilers and run on Intel
and AMD chipsets.

Chipset

Compiler

Original
CAMx (min)

Updated
CAMx (min)

Reduction
(%)

Max Ozone Difference (ppb)

Grid 1 Grid 2 Grid 3

Intel PGF 185 153 17% 0.157 0.817 0.921

Intel IFORT 229 124 46% 0.348 3.013 1.114

AMD PGF 169 135 20% 0.157 0.817 0.921

AMD IFORT 371 116 69% 0.176 0.817 1.114

Using PGF, model speed was consistently reduced by roughly 20% on the Intel and AMD
machines. Much larger improvements of 50% or more were noted for IFORT, particularly on
the AMD machine. However, the unmodified IFORT model was much slower on both machines
than its PGF counterpart, and so the updates were effective in aligning model speed
performance across compilers and hardware. The rather slow performance of the original
IFORT model on the AMD machine is concerning, but may be related to the fact that IFORT
compilation was executed on an Intel chipset and so not optimized for AMD. We suspect that
the IEEE compiler flag for the IFORT/Intel run may have played a role in this feature. Since this
should not be an issue for TCEQ’s PGF compilations, we plan to further test this issue on our
own in the near future.

Maximum concentration differences are generally well below 1 ppb. However, concentration
differences up to a few ppb are noted in Table 3-7 (Intel chipset, IFORT build). Differences of
this magnitude are most likely related to small changes in the behavior of individual PiG puffs
(chemistry, location, size) as a result of the various modifications implemented in CAMx. This
result is consistent with the PiG-related impacts identified in the interim testing (Section 3.1.3).

3.2.2 Profiling Results

A final profiling test was run for the updated version of CAMx. The model date and
configuration was identical to Phase 1 “Run 3” so that comparisons could be made directly to
profiling results from the original version of CAMx (Table 2-4). Table 3-8 presents timing
results from OMP thread 0 (consisting of all model processes). The sum of all processes and
individual routines listed comprised 93% of the 10,308 second total CPU time for thread 0.
Total run time was reduced 14% relative to the original Run 3. Although the order and relative
time spent in each model process remained similar to Table 2-4, the updates reduced time
spent in OMP and system routine substantially (from 1100 seconds to 553 seconds, or from 9%
to 6% of total run time, or about 34% of the total reduction in run time).

July 2015

24

Table 3-8. Rerun of Run 3 (Table 2-4) with all compiler flag and code updates. Process and
routine CPU time for OMP thread 0. Routines parallelized with OMP are noted.

Process Routine OMP Time (s) Time (% of total)

Chemistry
45%

 ebirate3 1,770 17%

 ebisolv 839 8%

 hr_hox3 648 6%

 ebirxn3 461 4%

 chemdriv 369 4%

 hr_nox3 360 3%

 hr_nxy3 150 1%

 hr_pan3 129 1%

 kphoto 54 <1%

Diffusion
10%

diffuse 635 6%

tridiag 317 3%

vdiffimp 123 1%

V Advection
10%

zadvec 321 3%

tridiag 317 3%

vrtslv 278 3%

zrates Partial 73 <1%

H Advection
10%

hadvppm 718 7%

xyadvec 266 3%

PiG 6% pigdrive Partial 585 6%

Output
3%

average 154 1%

massum 153 1%

aggreg 84 <1%

OMP 3% _mp_barrier 295 3%

System
3%

__c_mzero4 193 2%
__c_mcopy4 65 <1%

Emissions 1% Emiss Partial 135 1%

3.3 Testing at TCEQ

The updated CAMx code was delivered to TCEQ for further testing on the agency’s computer
system. The specifications of the computer cluster used for these tests are listed below:

 Seven Dell PE M620 nodes with dual 8-core Xeon E5-2650v2 chipsets (112 cores total), 2.6
GHz, 32 GB RAM

 InfiniBand (IB) Network, 40Gb/s

 Dell NFS Storage Solution (NSS; Dell PE R710 server and Dell PV MD1200 disk arrays) – XFS
file systems accessed by server nodes via NFS over IB network

 IBM Platform HPC cluster management software

Both modified and un-modified versions of CAMx were compiled using PGF compiler v15.7. For
both compilations the standard “O2” compiler optimization was invoked, but the PGF compiler
flag “-Mconcur= nonuma” was removed. Additionally, the modified CAMx code was compiled
with PGF compiler flag “-Kieee” removed. In both cases, CAMx was parallelized using MPICH

July 2015

25

v3.1.4 across 6 nodes and with 16 OMP threads on each node, utilizing 96 physical cores
without hyper-threading.

Table 3-9 presents the timing results from 2-day tests (June 14 and 15) from TCEQ’s June 2012
modeling episode using the same CAMx configuration as described in Section 3.2.1. TCEQ
obtained model run times of less than 1 hour per simulation day using CAMx v6.20. Speed
improvements of about 15% were realized with the CAMx updates, which is consistent with our
results for the PGF compiler on Intel chipsets (Table 3-7). TCEQ found maximum ozone
concentration differences similar to the values shown in Table 3-7.

Table 3-10 presents additional timing results obtained by the TCEQ with PiG turned off. Greater
speed improvements are realized without PiG, by roughly 8%. For the TCEQ, PiG took roughly
30% of the total model run time, compared to less than 10% in our tests. This may be related
to fewer active PiG puffs on the day of our tests (May 17) vs. TCEQ’s (June 14-15). More likely,
it is because the core model scales better with number of threads than does PiG, combined
with TCEQ’s use of 96 cores as compared to 24 in our tests. Furthermore, in the TCEQ’s tests
PiG consistently took ~1000 seconds (17 minutes) for both CAMx v6.20 and the updated model,
showing that PiG is insensitive to speed improvements implemented in this project. Speed
improvements for PiG should be addressed in future work.

Table 3-9. CAMx runtimes for the unmodified CAMx model and the updated code with all
speed improvements: TCEQ’s 2-day run with MPI and OMP parallelization over 96 cores.

Episode Day CAMx v6.20 (s) Updated CAMx (s) Reduction (%)

June 14 3332 2773 17%

June 15 2993 2632 12%

Table 3-10. As in Table 3-9, but with PiG turned off. The “Time for PiG” is the absolute
runtime consumed by PiG for each day and for each version of CAMx.

Episode Day CAMx v6.20 (s) Updated CAMx (s) Reduction (%)

June 14 2246 1681 25%

Time for PiG 1086 4 1092

June 15 2042 1644 19%

Time for PiG 951 988

4 For CAMx v6.20 on June 14, Time for PiG = 3332 s – 2246 s

July 2015

26

4.0 CONCLUSION AND RECOMMENDATIONS

Recent additions and updates to CAMx have increased demands on computer resources and
have extended model runtimes. TCEQ plans to conduct seasonal modeling with PM and high
resolution grids, all of which increase computational demands. The objectives of this project
included (1) identifying areas of the CAMx code where improvements would likely have the
most impact on model speed, (2) developing and testing various methods to achieve speed
improvements, and (3) documenting the speed and accuracy impacts of these modifications
using a TCEQ modeling dataset.

Ultimately we implemented several modifications that resulted in the following speed
improvements on two of our computer systems using the TCEQ 2012 modeling database with
halogen chemistry (CB6r2h) and the Plume-in-Grid (PiG) module:

 15-30% speed improvement when compiled using PGF compiler;

 45-50% speed improvement when compiled using IFORT compiler.

The project was conducted under two phases. In Phase 1, we identified areas of the model
most needing speed enhancements according to analyses conducted using third-party code
profiling tools. Two issues were immediately apparent from our analysis:

 TCEQ should use the “K-theory” vertical diffusion in lieu of the ACM2 option. This is a
runtime option that requires no alternative input data or model compilation, and generates
practically identical results in much less time. EPA is currently improving the ACM2 solver
and this can be brought into CAMx in the future.

 An unnecessary PGF compiler flag “-Mconcur=nonuma” was found to dramatically increase
CAMx run times with PGF v13.4. TCEQ should remove this option in case their PGF compiler
version is similarly affected by this flag.

Under Phase 1 we found that the chemistry solver, and specifically a single routine that
calculates reaction rates, comprises up to 50% of simulation time and that the addition of
halogen chemistry slowed the model down disproportionately to the number of additional
species and reactions. We also identified certain issues related to our implementation of OMP
parallelization in CAMx. Finally, we expect that the current structure of multi-dimensional
variables and the order of process splitting (emissions, transport, chemistry) likely have some
negative impact on model speed related to memory access (caching) efficiency and overhead
associated with MPI parallelization. Addressing these last issues requires greater effort and
more fundamental changes to the CAMx code structure, but carries less certainty for speed
improvements. We recommend specific activities for future work below.

Phase 2 addressed the highest priorities identified in Phase 1 according to available project
resources and schedule. We implemented and tested several modifications to CAMx code,
OMP parallelization and compiler flags. The following specific modifications were most
effective in improving model speed:

July 2015

27

 Remove IEEE compiler flags that standardize mathematical calculations among compilers
and thus preclude the use of compiler-specific optimized routines;

 Improve mixed-mode math statements for explicit typing (real, integer, single/double
precision, etc.) to maintain accuracy without the need for IEEE flags;

 Tailor OMP loop scheduling and collapsing to maximize OMP efficiency and scalability;

 Update chemistry solver convergence criteria; this strategy is particularly effective for
halogen chemistry;

 Remove DDM-specific calculations from the reaction rate routine (we have updated the
Chemical Mechanism Compiler to automate this change across all mechanisms).

We found that halogen chemistry derives more speedup than the standard CB6r2 mechanism,
and that the modifications tend to align model speed performance across compilers and
hardware. Impacts to peak ozone concentrations from these modifications were found to be
well below 1 ppb in cases without PiG, to generally just below 1 ppb (and in some cases just
exceeding 1 ppb) with PiG. This is attributed to small changes in PiG behavior that cause puffs
to dump mass to the grid at slightly different times (and possibly locations). We see no impacts
to OMP scalability with these speed improvements.

We have provided the updated version of CAMx to TCEQ at the close of this project. Tests were
performed on the agency’s computer cluster system using the same June 2012 datasets and
model configuration as our tests. TCEQ’s utilization of 96 cores for parallelization results in
model run times of less than 1 hour per simulation day. Additional speed improvements of
about 15% are realized with the CAMx updates, which are consistent with our results. Greater
speed improvements by roughly 8% are realized without PiG. Removal of PiG in TCEQ’s tests
results in a consistent ~1000 second (17 minute) improvement in both the original model and
the updated model, suggesting that PiG is insensitive to speed improvements implemented in
this project.

CAMx code updates described here will be incorporated into the next public release of CAMx.

4.1 Recommendations

We recommend that TCEQ conduct tests over their longer modeling periods to benchmark
speed improvements. We also suggest that TCEQ apply CAMx with a variety of OMP/MPI
combinations on their computer system to see if these updates impact optimum parallelization.

Based on results from this project, we recommend follow-on work to further improve CAMx
speed performance:

 Update the ACM2 vertical diffusion solver according to EPA’s improvement for CMAQ;

 Screen for instances where mixed-mode math statements are inadequately coded and
make appropriate adjustments;

 Implement efficiency and OMP parallelization improvements in the Plume-in-Grid model;

July 2015

28

 Add OMP parallelization to currently un-parallelized portions of the code;

 Further investigate and test efficiency from scheduling OMP loops as static or dynamic;

 Investigate and test improvements to MPI parallelization for processes that consistently and
inherently suffer from load imbalance, e.g., Plume-in-Grid;

 Restructure major 3- and 4-D variable arrays (in combination with the point below) for more
efficient memory management and caching;

 Restructure the order of key physical processes in the model (emissions, transport,
chemistry, PiG) to operate together more efficiently by improving memory caching and
reducing MPI overhead.

July 2015

29

5.0 REFERENCES

Emery, C., B. Koo, T. Sakulyanontvittaya, G. Yarwood, 2013. Improving CAMx GREASD PiG
Efficiency. WO 582-11-10365-FY13-09 Final Report. Prepared for the Texas Commission
on Environmental Quality, Austin, TX. Prepared by ENVIRON International Corp.,
Novato, CA (August, 2013).

Emery, C., G. Wilson, D.J. Rasmussen, G. Yarwood, 2015. Work Order No. 582-15-52944-FY15-
35, Phase 1: CAMx Speed Improvement Strategy Plan. Memorandum prepared for Jim
MacKay, Texas Commission on Environmental Quality, Austin, TX. Prepared by ENVIRON
International Corp., Novato, CA (March 31, 2015).

ENVIRON, 2012. Dallas-Fort Worth Modeling Support: Improving Vertical Mixing, Plume-in-
Grid, and Photolysis Rates in CAMx. WO 582-11-10365-FY12-06 Final report. Prepared
for the Texas Commission on Environmental Quality, Austin, TX. Prepared by ENVIRON
International Corp., Novato, CA (August, 2012).

ENVIRON, 2015. The Comprehensive Air quality Model with extensions (CAMx), version 6.20.
http://www.camx.com.

Johnson, J., E. Tai, P. Karamchandani, G. Wilson, G. Yarwood, 2013. TCEQ Ozone Forecasting
System. WO 582-11-10365-FY13-13 Final Report. Prepared for the Texas Commission
on Environmental Quality, Austin, TX. Prepared by ENVIRON International Corp.,
Novato, CA (November 15, 2013).

Johnson, J., G. Wilson, DJ Rasmussen, G. Yarwood, 2015. Daily Near Real-Time Ozone Modeling
for Texas. WO 582-11-10365-FY14-16 Final Report. Prepared for the Texas Commission
on Environmental Quality, Austin, TX. Prepared by ENVIRON International Corp.,
Novato, CA (January 29, 2015).

Wilson, G. and J. Johnson, 2010. Speed Enhancements for EPS3. WO 582-7-84005-FY10-09 Final
Report. Prepared for the Texas Commission on Environmental Quality, Austin, TX.
Prepared by ENVIRON International Corp., Novato, CA (July, 2010).

